Seismology - Facts from the Encyclopedia - Yahoo! Education
Skip to search.

Encyclopedia: seismology


Reference
Dictionary
Encyclopedia
Thesaurus
World Factbook

 
Search Encyclopedia:

Columbia University Press
seismology
 (sīzmŏl´symboljē, sīs—) , scientific study of earthquakes and related phenomena, including the propagation of waves and shocks on or within the earth by natural or artificially generated seismic signals.

Seismographic Instruments

Instruments used to detect and record seismic disturbances are known as seismographs. Those in use today vary somewhat in design and function, but generally a heavy mass, either a pendulum or a large permanent magnet, is connected to a mechanical or optical recording device. When earthquake tremors occur, the pendulum or the magnet, because of inertia, remains still as the earth moves beneath, with the relative motion between the earth and the instrument magnified mainly by electrical amplifying apparatus. The graphic record, called the seismogram, can be used to establish information about an earthquake, e.g., its severity and distance. By using three instruments, each set to respond to motions from a different direction (north-south horizontal, east-west horizontal, and vertical), both the distance and the direction of the earth movement can be determined. Three or more widely spaced seismographic stations are required to pinpoint the location of earthquakes in remote regions.

Although seismographs have been used since their invention by John Milne in 1880, until the end of the 20th cent. their placement was limited to land areas, creating conspicuous gaps in global seismic coverage under the oceans that cover most of the earth's surface. During the late 1990s geologists began to create an underwater network of geological observatories using undersea coaxial cables no longer used for communications. This enabled the more precise detection and measurement of seismic disturbances occurring between the continental land masses.

Development of Seismology

The American scientist John Winthrop (1714—79), often called the founder of seismology, was one of the first to make scientific studies of earthquakes. By analyzing seismic data from a 1909 earthquake near Zagreb (now in Croatia), the Austro-Hungarian meteorologist Andrija Mohorovičić discovered a boundary between the crust and mantle, now called the Mohorovičić discontinuity or Moho. Seismological studies were furthered by the U.S. seismologist Charles F. Richter, who invented the Richter scale to determine an earthquake's magnitude. Each successive point on the logarithmic scale represents an increase by a factor of 10 in wave amplitude. A modified Mercalli scale, originally developed by the Italian seismologist Giuseppe Mercalli, is also based on the earthquake's effects on the surface.

Applications of Seismology

One aspect of seismology is concerned with measuring the speeds at which seismic waves travel through the earth. Past earthquake studies have shown that P, or primary/compressional, waves travel fastest through the earth; S, or secondary/transverse, waves cannot pass through liquids, allowing scientists to discern the earth's many boundary layers known as the crust, mantle, and core. For example, the disappearance of S waves below 1,800 mi (2,900 km) shows that the outer core of the earth is liquid. Seismologists also prepare seismic risk maps for earthquake-prone countries; these indicate the degree of seismic danger. In addition, seismologists use earthquake data to determine plate boundaries (see plate tectonics); active earthquake areas generally coincide with plate margins, both destructive and growing, and transform faults.

An important commercial application of seismology is its use in prospecting for oil deposits. The first oil field to be discovered by this method was found in Texas in 1924. A portable seismograph is set up in the area to be investigated, and an explosive energy source is activated nearby; formerly, explosives such as dynamite were used to create the seismic waves, but they have been largely replaced by high-energy vibrators on land and air-gun arrays at sea. The waves generated are received by detectors known as geophones; on land, these are commonly placed in a fan-shaped pattern on the ground. From an interpretation of the waves created by the energy source and recorded by the seismograph, the detection of geological structures in which oil may be trapped is possible.

Seismic methods are sometimes used to locate subsurface water and to detect the underlying structure of the oceanic and continental crust. With the development of underground testing of nuclear devices, seismographic stations for their detection were set up throughout the world. Under the Comprehensive Test Ban Treaty (signed 1996 but not yet in force) an international monitoring system has been set up which includes many seismic stations; the detailed data collected is also used by contributing nations for purposes other than monitoring nuclear tests.

Bibliography

See B. F. Howell, An Introduction to Seismological Research: History and Development (1990); T. Lay and T. C. Wallace, eds., Modern Global Seismology (1995); H. A. Doyle, Seismology (1996). See also bibliography under earthquake.